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Abstract
We define new diagram algebras providing a sequence of multiparameter
generalizations of the Temperley–Lieb algebra, suitable for the modelling of
dilute lattice systems of two-dimensional statistical mechanics. These algebras
give a rigorous foundation to the various ‘multi-colour algebras’ of Grimm,
Pearce and others. We determine the generic representation theory of the
simplest of these algebras, and locate the nongeneric cases (at roots of unity of
the corresponding parameters). We show by this example how the method used
(Martin’s general procedure for diagram algebras) may be applied to a wide
variety of such algebras occurring in statistical mechanics. We demonstrate
how these algebras may be used to solve the Yang–Baxter equations.

PACS numbers: 02.10.Hh, 05.50.+q, 11.25.Hf

1. Introduction

Some time ago, motivated by the study of dilute lattice models [41, 50], Grimm and Pearce
[18] introduced generalizations of certain diagram algebras (algebras with a diagrammatic
formulation [33]), such as Temperley–Lieb [44] and Murakami–Birman–Wenzl [39, 4]
algebras. These algebras are important in the theory of solvable lattice models of two-
dimensional statistical mechanics [2] and are related to link and knot invariants [46]. The
generalization was conceived on the diagram level by introducing diagrams with lines in a
number of colours. Each algebra was then described by generators and relations dictated, or
at least suggested, by the requirement of solving the Yang–Baxter equations. However, the
diagrammatic (which is to say, topological) underpinning was not precisely formalized.

The classes of solvable lattice models called dilute lattice models [41, 50, 51] whose
discovery motivated this generalization are closely linked to models of dilute loops on a lattice
[1, 49]. These models attract particular interest because they contain a solvable ‘companion’ of
the two-dimensional Ising model in a magnetic field [50, 16, 17]—one of the famous unsolved
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problems in statistical mechanics. The idea here is to consider two colours, and to regard the
second colour merely as a dilution of the first.

In the two-colour case the requirement of solving the Yang–Baxter equations is fully
satisfied by the design of the relations. The Yang–Baxter equations are sufficient to guarantee
solvability in the sense of commuting transfer matrices [2, 46]. Thus representations of such
algebras give rise to solvable dilute and two-colour lattice models. (More precisely, one has
relations for a tower of algebras, and the representation must be defined for the whole tower.)
Various explicit representations and associated models are considered in [18, 10, 11, 20,
21, 12].

The representations found included previously known lattice models [10, 11], but also
gave rise to new series of solvable lattice models [20, 21, 12]. However, little else was
discovered about these algebras and their structures. We have generators and relations, and
enough representations to show that these relations do not imply a trivial algebra, but no
knowledge of dimensions or even finiteness, and no analysis of irreducible representations.
To this extent the representations which were found were a matter of luck, and there was no
way to tell if the relations could engender other important but undiscovered models. This
may be contrasted with our quite complete knowledge of the representation theory of the
Temperley–Lieb algebra itself, which is strikingly rich and beautiful, and important in several
areas of mathematics and physics [8, 27, 28, 33, 25, 29].

In this paper we define a new algebra—the bubble algebra. We define this algebra entirely
diagrammatically, such that it is amenable to the general method of [33, section 9.5; 36]. We
then show that this gives a properly constituted diagrammatic realization of the Grimm–Pearce
multi-colour Temperley–Lieb algebra (i.e. it solves the Yang–Baxter equations). We hence use
the general method to determine the generic representation theory of these algebras completely.
We set up the machinery to investigate their exceptional representation theory (analogous to
that of ordinary Hecke algebras at q a root of unity). We show how irreducible representations
may be associated with physical observables in the corresponding lattice models. We conclude
with a discussion of the implications of our results for Bethe ansatz on models derived using
this algebra. We mainly discuss the case of two colours, as the further generalization to
more colours is straightforward. (The case of one colour is the original Temperley–Lieb
algebra.)

Generalizations of the Temperley–Lieb algebra are two-a-penny [35, 36, 31, 42, 9];
however, there are now a number of reasons for looking at the algebras introduced in [18]
again. Firstly, the diagram form of the Temperley–Lieb algebra is a deep and powerful
property (cf [27, 28, 33]), and our new realization provides a natural generalization on the
diagram level. Secondly, they provide solutions of the Yang–Baxter equation as we have
said. They are similar in some ways to the blob algebra, which has recently been shown
[6] to be useful in solving the reflection equation [43]. We also expect them to be of use
in constructing integrable boundary conditions for certain solvable lattice models, including
‘conformal-twisted’ boundary conditions [19, 3, 40, 14, 15], and thus to be of relevance to
boundary conformal field theory. Thirdly, we show that they are part of a class of algebras
amenable to the methods of [36], so that we may now analyse them quite efficiently (and hence
provide a uniform theory of such algebras). This analysis suggests (see later) that they may
be relevant for statistical mechanics on ladders (cf recent works [48, 47, 45]) and indeed, just
recently, this was shown to be the case [22]. They also look like they should be relevant for
circuit design and even transport network design (although we know of no example of their
use in these areas!) as we will see. There are also similarities with Murakami–Birman–Wenzl
algebras [39, 4] and Fuss–Catalan algebras [7], both of which have been used to construct
integrable systems, to the extent that the same methods are applicable there. Finally, they
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have a number of features of technical interest in representation theory (we largely postpone
comment on these to a separate paper, but see section 6 for a brief discussion).

We start with some definitions.

2. Diagram algebras

Our new algebra is a diagram algebra—an algebra with a diagrammatic formulation akin to
the Temperley–Lieb algebra [44, 33]. It will be convenient to recall this familiar example in a
suitable formalism, and then generalize to our case.

(2.1) Fix a rectangular subset of R
2 such that there is an edge with a North pointing normal

(e.g., [0, 1]× [0, 1]). Label each edge by the direction (NSEW) of its normal. Consider the set
of partitions of this rectangle by finitely many continuous non-crossing lines (walls) with no
wall touching the E or W edge. We define an equivalence relation on this set by equivalencing
two such partitions if they differ only by a continuous edge preserving deformation of the
rectangle. We call (representatives of) equivalence classes diagrams.

We say we can compose two such partitions, a over b, if there lie in their equivalence
classes two diagrams such that when a is juxtaposed with b from above, the southern endpoints
of lines in a coincide with the northern endpoints of lines in b (NB, this requires only that the
number of lines matches up). Each point of coincidence may then be regarded as an interior
point of a continuous line passing though the juxtaposition a|b. The composite ab is the new
partition of the combined region which results from this.

(2.2) Consider the subset of diagrams where there are precisely n endpoints on each
northern and each southern edge. For q an invertible indeterminate, consider the Z[q, q−1]-
linear extension of this set. Let Tn,Z denote the quotient of this linear extension by the relation
which equivalences any diagram with a closed (interior) loop to δ times the same diagram
without the closed loop, where δ = q + q−1. Note that Tn,Z has basis the set of diagrams
where there are precisely n endpoints on each northern and each southern edge, and no interior
loops. Note that the composition of diagrams passes to a well-defined composition on this set,
making it a Z[q, q−1]-algebra.

Fix K a field which is a Z[q, q−1]-algebra (for example, the complex numbers, with q
acting as some specified non-zero complex number). The Temperley–Lieb algebra Tn(q) is
the K-algebra K ⊗Z[q,q−1] Tn,Z.

(2.3) A line in a diagram with one endpoint in the northern (N) edge and one in the S edge
is called a propagating line. The identity element of Tn(q) is the unique diagram all of whose
lines are propagating.

There are a number of ways of embedding Tn−1 as a subalgebra in Tn. We will call that
embedding which maps a ∈ Tn−1 to the same diagram, but with one extra propagating line on
the right, the natural embedding.

For brevity we will assume familiarity with the usual presentation of Tn by generators
{U1, U2, . . . , Un−1} and relations, and the correspondence with the diagram version (see, for
example, [32]).

The topological/diagram realization of the Temperley–Lieb algebra is enormously useful
[33, 9] and deep [27–29]. We require a similarly clear-cut and intuitive construction, let us
call it a model, for the algebra introduced in [18]. Here we will concentrate mainly on the
model for two colours. The generalization to arbitrarily many colours will be obvious. A
generalization to the Murakami–Birman–Wenzl version is also possible.

Before we introduce the model note that the Temperley–Lieb diagrams described above
may be regarded as partitionings of the set of endpoints into pairs. The non-crossing rule
means that they are a proper subset of the set BJ

n of all such pair partitionings in general.
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The full set BJ
n is a basis for the Brauer algebra Jn [5] (whose composition rule need not

concern us here).
(2.4) Now consider the set each element of which consists of two-independent (but

simultaneous) partitionings of a rectangle as above (one, say, with red lines, one with blue).
Here independence means that walls of different colours may cross, but we will exclude
elements in which such crossings occur on the frame of the rectangle. We define an equivalence
essentially as before, so for example (locally)

but (because of the exclusion) not on the frame:

This is as if we have two parallel but independent deformable rectangles (one for each colour),
but they share the frame. Another way to think of this is as lines embedded not just in a
rectangle, but in bubble wrap (bubble wrap is made from two sheets of polythene welded
together along certain lines to trap bubbles). Red lines are allowed on the welds and the back
sheet; blue lines are allowed on the welds and the front sheet:
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In this realization lines on the same sheet (or on the weld) are not allowed to touch, but
otherwise may be deformed isotopically as before. Accordingly, we call the deformation
equivalence ‘bubble isotopy’.

Again we define composition whenever the number of endpoints (irrespective of colour)
matches up. We do this as follows. We call the match up precise if the colours match up
precisely (i.e. we can identify the touching edges and have a properly formed two-colour
partition). The composite is zero unless the colours match up precisely. If they do match up
the composite is that two-colour partition.

Consider the subset of double partitionings in which the total number of endpoints (red and
blue) on the northern edge is n, and similarly on the southern edge. The bubble algebra T 2

n,Z

(so named to emphasize the topological diagram underpinning) is the Z
[
qr, q

−1
r , qb, q

−1
b

]
-

linear extension of this set and composition, with internal closed loop replacements (as in
Tn(q)). Thus T 2

n,Z has a basis, Bn say, of two-colour partitions (up to bubble isotopy) with no
internal loops. The loop replacement scalar δ here depends on the colour: δr = qr + q−1

r and
δb = qb +q−1

b . Fix a field K which is a Z
[
qr, q

−1
r , qb, q

−1
b

]
-algebra as before (e.g., the complex

numbers with qr, qb specified complex numbers). Denote the K-algebra K ⊗
Z[qr ,q

−1
r ,qb,q

−1
b ] T

2
n,Z

by T 2
n = T 2

n (qr , qb).
The obvious generalizations T N

n (N = 1, 2, . . .) include T 1
n = Tn.

(2.5) Let #r (d) denote the number of red propagating lines in diagram d (and similarly
for blue). Extend this to apply to any non-zero scalar multiple of d. It will be evident that
composing with any second diagram d ′ such that dd ′ �= 0 we have

#r (dd ′) � #r (d) (1)

and similarly for blue. Write Bn(i, j) for the subset of Bn with #r (d) = i, #b(d) = j , and
define

Bn(i) = ∪jBn(i − j, j) Bn[i] = ∪j�iBn(j)

so Bn(i) and Bn[i] consist of those diagrams in Bn with exactly i and at most i propagating
lines, respectively.

We say that two lines are strictly non-crossing when they are non-crossing even when
projected into a single plane (so as to recover Grimm and Pearce’s original diagrams). Write
B ′

n(i, j) for the subset of Bn(i, j) with lines all strictly non-crossing, and define B ′
n(i) similarly.

For example, B ′
n(n) is the set of diagrams with all lines propagating and strictly non-

crossing. It will be evident that |B ′
n(n)| = 2n, and that

1 =
∑

d∈B ′
n(n)

d

is an orthogonal idempotent decomposition of the identity element of T 2
n .

If d ∈ Bn−1, let Ir (d), Ib(d) ∈ Bn denote the same diagram except with one extra non-
crossing propagating red (resp. blue) line to the right of all other lines. Thus Ir and Ib are
injective maps on bases, which extend to injective maps from T 2

n−1 to T 2
n . Note that these

maps do not preserve the identity element. There is, however, an inclusion

I : Tn−1 ↪→ Tn

given by d �→ Ir (d) + Ib(d) which we will call the ‘natural’ inclusion by analogy with the Tn

case.
(2.6) The basis Bn may be constructed systematically for each n from that for n − 1 using

some simple combinatorial devices which we will describe shortly.
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Examples. The basis B1 of T 2
1 consists of the following diagrams

The basis B2 of T 2
2 consists of the following diagrams:

In particular B2(0, 0) consists of the diagrams in the middle row; B2(2, 0) consists only of the
leftmost diagram in the top row; and B2(0, 2) the rightmost. The remaining diagrams are in
B2(1, 1), thus B2 = B2(0, 0) ∪ B2(2, 0) ∪ B2(0, 2) ∪ B2(1, 1).

Let us write Ur
1 for the rightmost diagram in the middle row of B2 diagrams above, and

also for the image of this diagram under I (or arbitrary compositions of I). Let w be a
sequence in {r, b} of length n − 2m, then write er

w for the following element of Bn:

erw =
...

m w

(in this example w = rrbbr).

3. Solutions to the Yang–Baxter equations

In the sections after this one we will return to discussing the general algebra basis and
irreducible representation theory. First let us briefly look at how the algebra can be used to
build solutions to the Yang–Baxter equations. We will need to start with some notation and
definitions.



The bubble algebra 10557

3.1. One-colour notations

Consider the ordinary spin chain representation [44, 2] of the one-colour Temperley–Lieb
algebra. Choose a basis v1 = |++〉, v2 = |+−〉, v3 = |−+〉, v4 = |−−〉 and define

e =
( )

=




0 0 0 0
0 q 1 0
0 1 q−1 0
0 0 0 0


 . (2)

We can think of this as a product of a bra and a ket

e =
( )

=
( ) ( )

=




0
q

1
2

q− 1
2

0


 ( 0 q

1
2 q− 1

2 0 ) (3)

where

( )t

=
( )

= ( 0 q
1
2 q− 1

2 0 ) . (4)

3.2. Two-colour representation

We now describe a (highly reducible) representation of the two-colour algebra. This is a
representation on the tensor product space C

4n ∼= C
4 ⊗ C

4 ⊗ · · · ⊗ C
4. We specify the

representation by giving the explicit representation matrices of the ten elements of the basis
B2 of T 2

2 on C
16 ∼= C

4 ⊗ C
4. The representation matrices are thus 16 × 16 matrices, with

entries that now depend on two parameters qr and qb. The matrices are given in the basis
v1 = |r+r+〉, v2 = |r+r−〉, v3 = |r+b+〉, v4 = |r+b−〉, v5 = |r−r+〉, v6 = |r−r−〉, v7 = |r−b+〉,
v8 = |r−b−〉, v9 = |b+r+〉, v10 = |b+r−〉, v11 = |b+b+〉, v12 = |b+b−〉, v13 = |b−r+〉, v14 =
|b−r−〉, v15 = |b−b+〉 and v16 = |b−b−〉 of C

16, where r and b refer to the two colours, and we
have an additional variable living on the lines which you may think of as an arrow pointing
up (+) or down (−), as in the usual spin chain representation of the Temperley–Lieb algebra,
compare equation (2).

The representation matrices for the elements with two propagating straight red or blue
lines are diagonal, with elements

( )
= diag(1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

( )
= diag(0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

( )
= diag(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)

( )
= diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1)
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those for two crossing lines of different colour are

( )
=

( )t

=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

Finally, there are four colourings of the usual Temperley–Lieb generators. These can again be
written as products of kets and bras, just as in equation (3) for the one-colour case,( )

=
( ) ( )

( )
=

( ) ( )
( )

=
( ) ( )

( )
=

( ) ( )

where now( )t

=
( )

= (
0 q

1
2
r 0 0 q

− 1
2

r 0 0 0 0 0 0 0 0 0 0 0
)

( )t

=
( )

= (
0 0 0 0 0 0 0 0 0 0 0 q

1
2
b 0 0 q

− 1
2

b 0
)
.

3.3. Yang–Baxter construction

Let us elaborate on this by means of an explicit example. From certain representations of the
two-colour bubble algebra, we can derive integrable vertex models. In the simplest scenario,
these vertex models correspond to Ř-matrix solutions of the Yang–Baxter equation

(Ř(u) ⊗ id)(id ⊗ Ř(u + v))(Ř(v) ⊗ id) = (id ⊗ Ř(v))(Ř(u + v) ⊗ id)(id ⊗ Ř(u)) (5)

which is an equation on a triple tensor product space V ⊗ V ⊗ V , with Ř acting on V ⊗ V . A
particular vertex model on the square lattice is specified by the matrix elements of Ř(u), which
correspond to the Boltzmann weights of the respective local configurations (the variable u is
the spectral parameter). The transfer matrices Tn(u) are built from elementary matrices Ř(u),
so as to act on the n-fold tensor product V ⊗V ⊗ · · ·⊗V . They commute for different values
of u. The free energy of the vertex model is then obtained from the largest eigenvalue of the
transfer matrix, and we are particularly interested in its behaviour as n tends to infinity.

The Ř-matrix

Ř(u) = sin(λ − u)

sin(λ)
I +

sin(u)

sin(λ)
e = sin(λ − u)

sin(λ)

( )
+

sin(u)

sin(λ)

( )
(6)
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expressed in terms of generators of the (one-colour) Temperley–Lieb algebra with q + q−1 =
2 cos λ, is a well-known example of a solution of the Yang–Baxter equation [46]. In fact
it follows from the relations in the Temperley–Lieb algebra that this combination satisfies
the Yang–Baxter equation. Hence this ‘Baxterization’ shows that any representation of the
Temperley–Lieb algebra with a large n limit yields a solvable lattice model of statistical
mechanics. For the representation at hand, this model is the well-known six-vertex model,
and the Ř-matrix is related to the affine Lie algebra A

(1)
1 [24].

Let us now move on to the two-colour case. The Ř-matrix [18, 21]

Ř(u) = sin(λ − u) sin(3λ − u)

sin(λ) sin(3λ)

[( )
+

( )]
+

sin(3λ − u)

sin(3λ)

[( )
+

( )]

− sin(u) sin(2λ − u)

sin(λ) sin(3λ)

[( )
+

( )]
+

sin(u)

sin(3λ)

[( )
+

( )]

+
sin(u) sin(3λ − u)

sin(λ) sin(3λ)

[( )
+

( )]
(7)

with q + q−1 = −2 cos(λ), satisfies the Yang–Baxter equation (5) as a consequence of the
relations of the bubble algebra. Thus any representation of the two-colour bubble algebra on
a tensor product space V ⊗ V ⊗ · · · ⊗ V with qr = qb =: q gives rise to an integrable vertex
model with an Ř-matrix given by equation (7) with Boltzmann weights that are trigonometric
functions of the spectral parameter u.

For the representation at hand, the Ř-matrix turns out to be related to the affine Lie algebra
C(1)

2 [24]. It differs from the vertex model of [24] by a spectral parameter-dependent gauge
transformation [18].

4. Combinatorics and representation theory

4.1. The algebra basis Bn

Note that Bn is somewhat like the Brauer diagram basis BJ
n of the Brauer algebra Jn [5], which

in turn contains the diagram basis of Tn. From each ‘seed’ element of the Brauer basis, we can
get some number (0 or more) of diagrams of Bn by colouring the lines in the following way.
First put a total order on the n lines (any one will do—for definiteness we will number the line
coming out of the top left endpoint 1, then number other lines 2, 3, . . . as they first appear
reading clockwise round the frame). Each line, considered in this order, may be coloured red
or blue, unless it crosses one or more already coloured lines, in which case it must be coloured
in a colour distinct from those of all the crossing lines. Of course, if there are three or more
lines in the diagram this may not be possible (i.e. when a line crosses both of a pair of crossed
lines), in which case there are no coloured Brauer diagrams of this type in Bn.

Apart from the seeds with no possible colourings, each seed produces 2c elements of Bn,
where c is the number of lines in the seed which are either without any crossings, or are the
first line in their crossed cluster (i.e. the line whose colour is chosen freely).

(4.1) As with Tn [33] there is a bra–ket construction. Imagine cutting the bubble in half
(i.e. cutting through the front and back sheets, leaving a top and bottom piece each with Y
cross-section). It will be evident that it is possible to do this such that only propagating lines are
cut, and these once each. Note that given two pieces in this way, because of the non-crossing
within a layer rule, there is a unique way of recombining them, i.e. recovering the original
diagram. Indeed any bra– (top piece) and –ket (bottom piece) such that the number of cut
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lines matches up (on each sheet of the bubble separately) may be combined in a unique way.
For example,

That is, writing B
|〉
n (i, j) for the set of bra pieces obtained by cutting elements of Bn(i, j) (and

similarly B
〈|
n (i, j) for the set of ket pieces), then any element a of B

|〉
n (i, j) may be combined

with any element b of B
〈|
n (i, j) in a unique way to make a diagram ab in Bn(i, j):

Bn(i, j) ∼= B |〉
n (i, j) × B〈|

n (i, j). (8)

(4.2) Following [33, section 13.2], we define certain injective homomorphisms of bra sets
for any appropriate n, i, j :

Ar : B
|〉
n−1(i, j) ↪→ B |〉

n (i + 1, j)

takes a diagram d to a diagram differing from d only in having an additional red propagating
line at the right-hand end;

Ab : B
|〉
n−1(i, j) ↪→ B |〉

n (i, j + 1)

similarly, but adding a blue line; for i > 0

Br : B
|〉
n−1(i, j) ↪→ B |〉

n (i − 1, j)

takes a diagram d to a diagram differing from d only in having the southern endpoint of the
last (rightmost) red propagating line in d turn back to form a new rightmost northern vertex;
and Bb similarly for the last blue line.

It will be evident that

B |〉
n (i, j) = ArB

|〉
n (i − 1, j) ∪ AbB

|〉
n (i, j − 1) ∪ BrB

|〉
n (i + 1, j) ∪ BbB

|〉
n (i, j + 1) (9)

(any undefined set here to be interpreted as the empty set).
(4.3) It will be convenient to be able to depict the sum of two diagrams in Bn differing

only in the colour of one line by drawing any one of these diagrams with the relevant line
replaced by a thick line (called a white line). We will generalize this so that a diagram with
two white lines is a sum of four diagrams from Bn, and so on. Let us write Ui for that diagram
which has the same shape as the diagram Ui ∈ Tn, but has all white lines. Note that this is an
(unnormalized) idempotent: UiUi = (δr + δb)Ui .

Write el for an all white diagram of the same shape as er
w, where l is the length of the

sequence w. Thus en−2m = U1U3 . . . U2m−1.
Let ñ denote the element of {0, 1} congruent to n modulo 2.

4.2. Standard modules

Next we construct a basic set of representations of T 2
n .

(4.4) It will be evident from equation (1) that there is a filtration of T 2
n by ideals with

sections spanned by diagrams having fixed numbers of propagating lines—and hence having
the subsets Bn(i) ⊂ Bn as bases.



The bubble algebra 10561

Note in particular from equation (1) that T 2
n U1T

2
n has basis Bn[n − 2] = ∪i�n−2Bn(i);

T 2
n U1U3T

2
n has basis Bn[n − 4]; and so on. (If n is big enough then T 2

n U1T
2
n = T 2

n U1U2T
2
n ,

T 2
n U1U3T

2
n = T 2

n U1U3U2U4T
2
n , and so on, so these ideals may be considered idempotently

generated over any field K.) The filtration by propagating lines may thus be written

T 2
n ⊃ T 2

n U1T
2
n ⊃ T 2

n U1U3T
2
n ⊃ · · · ⊃ T 2

n U1U3 . . . U2m−1T
2
n ⊃ · · · .

Let us write T 2
n [i] for the ideal spanned by diagrams with � i propagating lines.

The total number i + j of propagating lines is one of n, n − 2, n − 4, . . . , 1/0. This
number may be partitioned in any way between red and blue lines, with the corresponding
ideal breaking up as a direct sum accordingly. The filtration thus refines to one with sections
spanned by the sets Bn(i, j) of diagrams with fixed propagating index (#r (d), #b(d)).

Each such section breaks up as a sum of isomorphic left modules each with basis of the
form {|a〉〈b| | |a〉 ∈ B

|〉
n (i, j)}, where |a〉 varies over all possibilities and b is fixed. (There

is obviously a parallel construction for right modules.) We denote (any representative of)
the equivalence class of these summands �n(i, j). These left modules are called standard
modules.

For example, �2(1, 1) has basis

,
while �2(2, 0) has basis

Note that, because of the sectioning, the action of B2(0, 0) elements on this object regarded
as a basis element of �2(2, 0) is to give zero (that is, any object with fewer propagating lines
would lie in the next layer of the filtration, and is thus congruent to zero in this section).

(4.5) Since the bottom (ket) halves of diagrams regarded as basis elements of standard
modules play no role, we have another basis for each standard module �n(i, j), consisting
of the set B

|〉
n (i, j) of bra diagrams, with the action defined in an obvious way.

Note the following.
(4.6) The construction of standard modules is independent of the choice of field.
Each standard module �n(i, j) comes with an inner product via its basis of bra diagrams

(and dual basis of ket diagrams):

d d ′ = kdd ′ d ′′

|d〉〈d| |d ′〉〈d ′| = 〈d||d ′〉 |d〉〈d ′|. (10)

In particular, if i + j = n, it is easily verified that the corresponding Gram matrix, Gn(i, j), is
the unit matrix. Thus �n(i, n − i) is irreducible for any qr, qb.

Note, on the other hand, that G2(0, 0) = diag(δr , δb), so that �2(0, 0) is reducible if
either δr or δb vanishes.
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More generally, it will be evident that |Gn(i, j)| is a non-zero polynomial in δr , δb. Thus

Theorem 1. The standard modules �n(i, j) are generically simple.

(Recall that generically means in a Zariski open subset of the (δr , δb) parameter space.)
On the other hand, inspection of the diagram for er

w shows the following:

Proposition 1. Let δr be invertible in K, and let er
w ∈ T 2

n have sequence w = rr . . . rbb . . . b =
ribj . Then

�n(i, j) ∼= T 2
n er

w mod T 2
n [i + j − 2]

Proposition 2. Over any field K with δr invertible �n(i, j) has simple head.

(Recall that the head of a module is the quotient by the intersection of all maximal proper
submodules.)

Proof. The generating element provided by the previous proposition is an unnormalized (but
normalizable) idempotent. It is not primitive in T 2

n , but it is primitive in a suitable quotient.
This means that the induced module is indecomposable projective in some quotient, so it has
a simple head. �

Next we consider the completeness of this set of representations.
(4.7) Irrespective of the choice of field, the restriction of standard module �n(i, j) to T 2

n−1
works as follows. If the line coming out of the last (rightmost) northern endpoint is propagating
and red (resp. blue), then d behaves, on restriction, like an element of the corresponding
basis of �n−1(i − 1, j) (resp. �n−1(i, j − 1)). That is, these modules are submodules of
Resn

n−1�n(i, j). If the line coming out of the last (rightmost) northern endpoint is red (resp.
blue) and not propagating, then, quotienting by the submodules just noted, d behaves, on
restriction, like an element of the corresponding basis of �n−1(i + 1, j) (resp. �n−1(i, j + 1)).
For example in �4(2, 0), restricting to n = 3 as indicated by the brace we have:

This information is neatly summarized (including positivity constraints) as follows.
Define a bipartite infinite graph G with vertex set N0 × N0 by

0,0

1,0

2,0

3,0

4,0

5,0

1,1

0,1

0,2

0,31,2

1,3 0,4

2,1

3,1

4,1

2,2

3,2
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Define Gn to be the full subgraph with vertices (i, j) such that i + j � n.

Proposition 3. The restriction from T 2
n to T 2

n−1 of �n(µ) may be given by

Resn
n−1�n(µ) ∼= +λ�n−1(λ)

where the sum is over the set of nearest neighbours of µ = (i, j) on the graph Gn.

It follows that the dimension of the module �n(i, j) is the number of walks from (0, 0) to
(i, j) of length n. It follows from this and equation (8) that the rank of the algebra (the degree
of Bn) is the sum of the squares of these dimensions; and that

Theorem 2. If the algebra is semisimple in some specialization of the parameters (as
generically, for example—see theorem 1), then the standard modules are a complete set
of irreducible modules in that specialization.

(4.8) A finite-dimensional algebra (call it A) has, of course, finitely many classes of
irreducible representations. Let S(A) be the set of these. Now suppose B is a subalgebra of A,
with irreducibles S(B). We can restrict R ∈ S(A) to be a representation of B (every element
of B has a representation matrix in R since B ⊂ A). As a representation of B this R will not in
general be irreducible—in general it will be made up of a sum of one or more B irreducibles
(we say, one or more factors). A Bratteli diagram of the pair (A,B) is a graph with a vertex
for each element of S(A) and a vertex for each element of S(B) (the union of these vertices is
usually but not always taken disjoint). If there is an edge between a and b say, then it means
the restriction of a ∈ S(A) contains b as a factor. Thus in particular the fact that ‘the sum
of the dimensions of all the factors of a is the dimension of a itself’ becomes ‘the dimension
at a is the sum of the dimensions of the nearest neighbours of a on the graph (possibly with
multiplicities)’.

A Bratteli diagram of a tower of algebras A ⊃ B ⊃ C . . . extends this in the obvious way.
If the last algebra in this sequence is a one-dimensional algebra (with one 1D irrep., call it o)
then the number of walks on the graph from o to point a will be the dimension of the irreducible
a (so the set of these walks will be a basis for a). Again for the tower, S(A) and S(C) may
(for ease of drawing, say) be allocated some vertices in common (‘foreshortened’ diagram).
This does not spoil the counting if we are careful (each vertex corresponds to irreducibles in
more than one algebra, but, on fixing a given algebra, that vertex becomes unambiguous).

(4.9) In our algebra we see that the standard modules play a special role, somewhat akin
to that of simple modules, although over an arbitrary field they are not themselves necessarily
simple.

The Bratteli basis diagram of such an algebra is a certain embellished graph, each vertex
of which corresponds to a standard module label (in this case the label consists of n and a
propagating index λ); and each edge of which corresponds to a factor in the restriction of that
module to n − 1 (as above). Each vertex is embellished with a depiction of a basis for the
corresponding standard module.

A foreshortened Bratteli basis diagram is a Bratteli basis diagram viewed from such a
direction as to cause certain vertices to coincide. In our case it is those vertices for different
n which have the same propagating index (thus a whole tower of embellishments will have to
be drawn at the same point, but there are good reasons for this—see later). Such a diagram,
where possible to draw, contains essentially complete information on the generic representation
theory of the algebra. The (foreshortened) Bratteli basis diagram for T 2

− begins
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(11)

It may be helpful to emphasize that here the basis element

could also be written

—in the bra form these are equivalent, since the red and blue lines are not on the same bubble
layer.

If an algebra is semisimple (as ours is generically) then its total dimension is the sum
of the squares of the dimensions of the irreducibles. Here we see, for any K, that the total
dimension is the sum of the squares of the dimensions of the standards. Thus the entire
combinatoric is encoded in the pictures. Every possible diagram is built bra–ket from the kets
in the foreshortened Bratteli diagram (and their descendents).

(4.10) In the ordinary Temperley–Lieb case it is the non-semisimple exceptions (q root of
unity) which are of most interest. We conclude by setting up machinery to investigate this case
(again paralleling Martin’s usual approach [34, 37] to Temperley–Lieb and its generalizations).

5. Categories, roots of unity, conformal series etc

We may use a little category theory to very efficiently rederive the generic representation
theory of T 2

n given above, in such a way that it can readily be extended to the exceptional
cases.

Recall Ui from section 4 and let U = Un−1. Note that

UT 2
n U ∼= T 2

n−2. (12)
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A diagrammatic version of this follows from the representation of U by

(all lines ‘white’) so that

Note that U commutes with T 2
n−2 ⊂ T 2

n so that T 2
n U is a left T 2

n right T 2
n−2—bimodule.

Let F : T 2
n –mod → T 2

n−2–mod be the functor

F : M → UM

and G : T 2
n−2–mod → T 2

n –mod

G : N → T 2
n U ⊗T 2

n−2
N.

It follows from (12) that FG = 1T 2
n−2–mod. Thus (so long as U may be normalized as an

idempotent) we have a full embedding of the category T 2
n−2–mod in T 2

n –mod. The simple
modules L in T 2

n –mod not hit in this embedding are those for which UL = 0. That is, they
are also the simple modules of the quotient algebra T 2

n

/
T 2

n UT 2
n .

To reiterate, equation (12) gives what is called a full embedding of T 2
n−2 in T 2

n . This means
that there is a natural injection of S

(
T 2

n−2

)
into S

(
T 2

n

)
—another reason for the foreshortening

of the Bratteli diagram. It also means that most of the representation theory of T 2
n follows

from that of T 2
n−2 via a little elementary category theory—and hence inductively from the

trivial cases T 2
0 and T 2

1 .
Note that T 2

n UT 2
n includes every diagram except those with exactly n propagating lines.

Thus T 2
n

/
T 2

n UT 2
n is spanned by the set Bn(n) of diagrams with exactly n propagating lines.

Let �n denote an index set for the simple modules of T 2
n , and �n an index set for the quotient

algebra T 2
n

/
T 2

n UT 2
n . So long as U may be renormalized as an idempotent it follows that

�n = �n−2 ∪ �n (13)

where the union is disjoint. The full embedding allows us to inject �n−2 ↪→ �n in precisely
the way implied by the foreshortening of our foreshortened Bratteli diagram.

By equation (13), we know �n if we know �m for all m. We now determine this set.

5.1. The subalgebra generated by Bn(n)

Note that KBn(n) is a subalgebra of T 2
n . Let T ′

n denote this subalgebra, then

T ′
n ↪→ T 2

n −− T 2
n

/
T 2

n UT 2
n

is a sequence of algebra morphisms. The composite morphism takes an element of Bn(n)

to the same object regarded as a basis element of T 2
n

/
T 2

n UT 2
n , hence it is an isomorphism.

Provided our ground field K has characteristic different from two (we are mainly interested in
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C, with characteristic zero, of course) this algebra may be identified with a certain quotient of
the wreath product group algebra KC2 � Sn, where C2 denotes the cyclic group of order two
and Sn the symmetric group (permutation group of n elements) of order n!, as follows.

Elements of C2 � Sn may be represented in the form of permutation diagrams where each
line carries zero or one beads:

(i.e. there are 2nn! such diagrams). The rule of composition is then as for ordinary permutations
except that the number of beads on a single line is reduced modulo 2.

Such a diagram d in which some line is replaced by a (beadless) red (resp. blue) line is to
be understood as the linear combination

d ′ = d0 ± d1

2
(14)

where d0, d1 denote the diagram with that line having zero/one beads, respectively. Replacing
all lines in this way, in all possible ways, we have another basis of KC2 � Sn consisting of all
possible two-colourings of permutations. The composition rule here (in consequence of 14) is
to compose permutations by juxtaposition as usual, except that if two different coloured lines
are juxtaposed the composite is zero.

Consider the subset of this basis consisting of elements in which two lines may cross
only if their colour is distinct. This is a basis for a subalgebra (to see this again consider the
different coloured lines as living in two different layers—within a layer there are no crossings,
and this is not affected by composition). Indeed it will be evident that this subalgebra may be
identified with T ′

n.
Now define two linear combinations in KC2 � S2, each of shape

–

but one with all lines coloured red, one with all lines coloured blue. Note that these are
(unnormalized) idempotents. Define algebra H 2

n to be the quotient of KC2 � Sn (any n > 1)
by both these objects.

It is well known that the irreducible representations of KC2 � Sn over K = C are indexed
by pairs of integer partitions of combined degree n, and that the idempotents above are
the primitive and central idempotents of KC2 � S2 corresponding to the one-dimensional
irreducible representations indexed by ((12), ) and (, (12)). It follows (after a little work, see
[38]) that the index set for irreducibles of the quotient H 2

n is the subset of the set of pairs of
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integer partitions in which no partition has a second row. It follows similarly that the Bratteli
diagram for the tower of these algebras as n varies is the Pascal triangle, i.e. the simples for
given n lie in the nth layer of the Pascal triangle.

Note that Bn(n) may be regarded as a basis for H 2
n , since in H 2

n any two lines of the
same colour which are crossed may be replaced by the same two lines uncrossed (i.e. a local
implementation of the quotient by the diagram above in that colour). Now consider the
sequence of algebra morphisms

T ′
n ↪→ KC2 � Sn −− H 2

n .

The image of a basis element in Bn(n) under the composite map is the same element regarded
as a basis element of H 2

n . Thus the composite is an isomorphism.
We have established a sequence of isomorphisms which allows us to identify the index

set for simple modules of H 2
n with �n. This reproduces the layer of the Pascal triangle in

our original foreshortened Bratteli diagram and, taken layer by layer, using equation (13)
reproduces the whole foreshortened Bratteli diagram.

5.2. On the exceptional structure of T 2
n

The rb-sequence of a diagram is the sequence of colours of strings, read off clockwise from
the top left-hand corner of the frame. The standard basis Bn(µ) may be partitioned into subsets
of elements with the same rb-sequence, called rb-parts. Since colours are orthogonal, the
inner product is zero on any pair from Bn(µ) unless they lie in the same rb-part. Thus the
determinant of the Gram matrix is a product of corresponding block determinants.

It will be evident that the block determinant depends only on the number of r and b,
not their order in sequence. It is thus straightforward to determine the roots of the Gram
determinants (which, we recall, are polynomials in δr , δb), as follows.

For Bn(i, j) with i +j = n we have |Gn(i, j)| = 1. (Recall that a module is simple unless
its Gram matrix is singular, thus all these modules are simple.) For Bn(i, j) with i + j = n−2
all the lines but one are propagating, so all lines of one colour (red or blue) are propagating.
For example, the rrrrbb part of B6(2, 2) has Gram block

δr

δr

δr

1 0

1

10

1

We see that the colour with all lines propagating plays no role, and that the Gram block
coincides, in this example, with the (3, 1) Gram matrix of ordinary T4(δr). Thus the set of
roots of any such Gram determinant must be taken from the roots of the Gram determinants of
Tn(δr) and Tn(δb). These are well known [33] to lie in the set of roots of unity (when expressed
in terms of qr, qb) for each colour. That is,
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Proposition 4. If neither qr nor qb is a root of 1 then every module �n(i, j) with i + j = n−2
is simple.

Proposition 5. If either qr or qb is a root of 1 then there is an n such that T 2
n is not semisimple.

Now suppose that for some choice of K some standard module, �n(µ) say, is not simple
(as already noted, this has to happen for the algebra to fail to be semisimple). Then in particular
this module has some simple module, L(λ) say, in its socle. Take n to be at its lowest value
such that this occurs.

It is easy to see that both the localization functor F and the globalization functor G take
a standard module to a standard module with the same label (or 0 if no such module exists,
in case of F). It is also easy to see that every simple module occurs as the head of some
standard module. Thus the nonsimplicity of our standard �n(µ) must show up as a morphism
of standard modules between that having the simple L(λ) as its head (we might as well call it
�n(λ)), and �n(µ). If neither µ nor λ has i + j = n then we can localize until one of them
does, whereupon the corresponding standard is simple by our earlier analysis, thus this simple
standard must be �n(λ), and �n(µ) must have i + j < n, that is to say, µ1 + µ2 < n. But now
suppose this µ1 + µ2 < n − 2 (and there is not a suitable choice of µ with µ1 + µ2 = n − 2).
Consider the following Frobenius reciprocity:

Hom
(
Indn

n−1�n−1(λ1, λ2 − 1),�n(µ)
) ∼= Hom

(
�n−1(λ1, λ2 − 1), Resn

n−1�n(µ)
)
.

It is straightforward to show that �n(λ) appears in the head of the induced module
Indn

n−1�n−1(λ1, λ2 − 1). Thus the left-hand hom space is not empty. But then neither is
the right, and we have a nontrivial homomorphism of distinct standard modules at level n − 1
also. This is a contradiction of our construction that n is the lowest value for which such a
homomorphism occurs. Thus we may not suppose that µ1 + µ2 < n − 2, i.e. we must take
µ1 + µ2 = n − 2. In other words, the first occurrence of such a morphism must be into a
standard module with this type of label. But by proposition 4 such a morphism is only possible
if at least one of qr, qb is a root of unity. We have established.

Proposition 6. If neither qr nor qb is a root of 1, then every module �n(i, j) is simple, and
T 2

n is semisimple.

The determination of the complete structure of T 2
n when the parameters are roots of unity

remains for now an open problem. It should be amenable to the methods we have developed,
but it seems possible that considerably more donkey work remains. Given the connection
between the ordinary case and conformal representation theory (cf [30, 23, 37]), the answer
should raise some interesting issues.

6. Conclusions and discussion

We have constructed the generic irreducible modules of T 2
n . Every other module (such as

occurs in transfer matrices) can be built as a sum of these3. Thus the spectrum of any transfer
matrix will be (up to multiplicities) the union of the spectra computed using these smallest
possible modules. This analysis thus provides the most efficient tools for explicit computation
(modulo any overarching constraints imposed in practice by, for example, implementation of
the Bethe ansatz), cf [2, section 12.4]. Note that it also tells us a convenient labelling scheme
for types of correlation functions. The pair label (i, j) here replaces the charge sector label

3 Or in non-semisimple cases as a not necessarily direct sum of their simple heads.
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relevant for the Bethe ansatz in ordinary spin–chains [2, section 8.4]. That is, we have two
naive pseudoparticle types.

In case the second colour is merely to be regarded as a dilution (i.e. it just acts as a
placeholder), direct contributions to correlations involving this colour would be trivial or
ignored. In more general settings, we have the possibility of correlations in which distinct
operators cross over in the plane (a feature which cannot occur in models built from the
ordinary Temperley–Lieb algebra, such as ordinary Potts models and Ising models). This
‘thickening’ of the underlying plane lattice provides scope for considering a number of further
generalizations to more exotic 2D models and possibly also to 3D. We will return to these
possibilities in a subsequent paper.

Certainly T 2
n has a number of relatively obvious generalizations (T N

n ,N = 3, 4, . . . ,

and certain generalizations to more exotic underlying spaces) for which the corresponding
generalized analysis goes through directly. Work is in progress to find generalizations of
Grimm and Pearce’s original idea accordingly.

It is interesting that the exceptional structure of T 2
n is tied to the same special parameter

choices as are already widely familiar for 2D systems—q a root of unity—even though our
models have multiple parameters. This contrasts sharply with direct attempts to generalize
to 3D, such as the partition algebra, for which a completely different set of exceptional cases
occur [34].

Finally we note two points of interest in representation theory. The new algebras
have features reminiscent of a recent conjecture (see [38], cf our section 5.1) for a basis
of generalized blob algebras. These algebras have been used recently to probe the physically
relevant part of the representation theory of affine Hecke algebras [6], so the connection here
is intriguing. Secondly, we observe that there is no known diagram calculus for the Hecke
algebra quotient associated with Uqsl3 (in the sense that the Temperley–Lieb algebra is a
Hecke algebra quotient associated with Uqsl2). Indeed there is no calculus for slN for any N
but 2. Such a calculus has long been sought, and would be enormously useful in a number of
areas of representation theory. As a generalization of the sl2 case, our calculus provides some
intriguing clues for sl3 (although it is not itself an sl3 calculus).
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